White blood cells (WBC)

- number: 4-11 thousand/ µl
- distribution:

• monocyte (5%) in tissues macrophage

• lymphocyte (30%)

Neutrophil granulocyte

- function: recognisation and phagocytation of strange factors

- the phagocytosis is stimulated, if the bacterium is marked by immunglobulines and complement factors (opsonisation)

Neutrophil granulocyte

- specific metabolism:

• important the pentose-phosphate way (NADPH is required for generation of oxigene radicals)

$$O_2 \longrightarrow O_2^- \longrightarrow H_2O_2 \longrightarrow OH^\circ$$

superoxid radical hydroxil radical

Neutrophil granulocyte

- eliminational ways of phagocyted bacteria:

- reactive oxigen radicals
 - > NADPH-oxidase
 - myeloperoxidase
- digestive enzymes
 - ➤ proteinases
- bacteriostatic and killer proteines
 - ➤ lactoferrin
 - defensines

Killing mechanisms

Oxygen independent killing

Primer killing in lysosoms:

Kationic proteins

Hidrolytic enzyms (esterase, glycosidase, lipase)

Neutral esterase (kathepsin, elastase)

Kollagenase

Lizozim – lysis of bacterialcell wall

Secunder killing in lysosoms:

in 70% lisosim, kollagenase, laktoferrin- utilise of pathogen's iron

Respiratory Burst

• NADPH-oxidase: NADPH + $O_2 \longrightarrow O_2^- + H^+ + NADP^+$

 defect : Chronic Granulomatous Disease (CGD) (it isn't able to kill incorporated bacteria, thereby cell fragments storage = granuloma)

- Function of metal ions
 - Fenton reaction: $Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH^- + OH^\circ$
 - Haber-Weiss reaction: $O_2^- + H_2O_2 \longrightarrow O_2 + OH^- + OH^\circ$ (Fe as a catalisator)
- myeloperoxidase: $H_2O_2 + CI^- + H^+ \longrightarrow HOCI + H_2O$

Antioxidants

- functions: inactivation of releasing of oxigen radicals from neutrophils; thus they protect human cells against damaging effect
- vitamins
- enzymes superoxid-dismutase: $O_2^- + O_2^- + 2H^+ \longrightarrow H_2O_2 + O_2$
 - catalase: $2H_2O_2 \longrightarrow 2H_2O + O_2$

- bilirubin
- urine acid

Oxidative Stress

- dislocation of oxidant-antioxidant equilibrium to oxidant direction
- results: ageing
 - radiation
 - drugs
 - genetic defect (eg.: glucose-6-P-dehydrogenase)
 - iron overload
 - reperfusion (obstructed area off blood circulation get blood again)
 - chonic imflammation
 - physical exercise (if it is usual, than the organisation will be acclimatize to it, that is protect the organisation on long-distance)
- consequences:
 - lipid peroxidation
 - general cell damage (because avoidance of long-distance consequences, the DNS repair is important)

Digestive Enzymes

they can be found as a precursor formed in azurophil granules
the azurophil granules fuse with the phagosom and those enzymes, which are get into here, are able to reduce bacterial proteines
types: elastase, collagenase, zselatinase, katepsin G

antiproteinases (it is inactivated by releasing proteinases)
 - α1-antitripsin, α2-macroglobulin

Digestive Enzymes

- proteinase-antiproteinase equilibrium is able to dislocate; results:

- genetic defect of α 1-antitripsin
- smoking $\longrightarrow \alpha 1$ -antitripsin activity decreases

Migration of Neutrophils

Macrophages

Elements of Blood Plasma and Functional Significance

Blood plasma: blood without corpuscular elements (in case of blood letting : in coagulation inhibitor containing tube the corpuscular elements precipitate, and the supernatant = plasma)

Blood serum: blood plasma without coagulation factors (in case of blood letting: coagulation begins directly in the native tube, the corpuscular elements with coagulation factors are formed as a coagulum, the supernatant = serum)

Main elements of blood plasma:

- water
- ions
- gases
- nutrient derivatives
- metabolic end products
- proteins
 - plasma proteins
 - plasma enzymes (e.g.: lipoprotein lipase)
 - tissue enzymes (e.g.: ASAT, ALAT, LDH)
 - protein hormones (e.g.: insulin)
 - adhesion proteins (e.g.: fibronectin)
 - storage proteins (e.g.: ferritin)
- non-protein hormones (amino acid derivatives, steroides)

Total protein level of Plasma Normal: 60-80 g/l

Decreasing:

- deficient feed
- disorder interferes directly with the absorption of nutrients (Malabsorptio)
- damage of the liver parenchyma (e.g.: cirrhosis)
- antibody defiency syndrome
- advanced tumors
- congenital analbuminaemia
- protein loss through gastrointestinal system
- protein loss through kidney (nephrosis syndrome)
- high burn, hemorhagic shock

Increasing:

- exsiccosis
- monoclonal gammopathies (tumor in plasma cells, if there is high amount of Ig in blood)

Plasma protein fraction (by electroforetic assays)

I. Prealbumin

- function: tiroxin binding
- II. Albumin
 - serum level: 40-60 g/l
 - function:
 - maintenance of colloid osmotic pressure
 - transfer (indirect bilirubin, fatty acides, hormones, drugs)
 - protein reserve (if its amount decreases:

osmotic pressure decreases

oedema)

III. α1-globulin

- 1. transcortin
 - function: corticosteroid binding
- 2. tiroxin binding globulin
 - function: T3, T4 binding

lábsároedema

3. α1-antitripsin

- function:

- main protease inbibitor in blood
- acut phase protein
- Genetic polimorfism (kb. 30 variation):
 - healthy fenotype: MM (100% activity)
 - heterozygote: MZ, MS, s (40-75% activity)
 - homozygote: ZZ (15% activity)
 - └⇒ consequence: lung: decreasing of antiprotease defense

elastin fibrilles are damaged alveoluses open into one emphysema

liver: a mutant protein polimerising in ER ↓ cyrrhosis

4. α1-lipoprotein (HDL)

- 5. α 1-fetoprotein
 - Function: immunsuppression
 - Increasing of serum level:
 - malignus tumors (mainly: liver tumors)
 - gravidity

- fetal development disorders (e.g.: vertebral column with open sacrum, open spinal column)

- IV. α 2-globulin
 - 1. Ceruloplasmin
 - Function:
 - binding and transferring of Copper
 - acut phase protein
 - Decreasing of serum level :
 - liver diseases
 - Wilson's disease, Menkes's disease
 - glucocorticoides
 - In neonatal- and childhood
 - Increasing of serum level:
 - estrogen effect

2. haptoglobin

- function: binding of free hemoglobin
- Increasing of serum level :
 - imflammation tumor
 - Tissue damage
- Decreasing of serum level :
 - high hemolysis (releasing hemoglobin is binding)
 - Liver damage
- 3. α2-macroglobulin
 - function: panprotease inhibitor
- 4. protrombin (coagulation factor)
- 5. antitrombin III.
- 6. erythropoetin
 - -function: stimulation of red blood cell synthesis
 - - synthesis: kidney

V.β-globulin

- 1. hemopexin
 - function: free hem binding
- 2. transferrin
 - function: Iron transport (Id.: Iron traffic)
- 3. ferritin
 - function: Iron storage
- 4. coagulation factors
- 5. plasminogen
- 6. C-reactive protein (CRP)

- function: activates the complement system in imflammational reaction

- 7. fibronectin (adhesion protein)
- 8. sex hormone-binding globulin (SHBG)

9. β 2-microglobulin

10. elements of complement system

11. β -lipoprotein (LDL)

12. pre β -lipoprotein (VLDL)

VI. γ-globulin (immunglobulines)

- 4 subunits : 2 heavy chains and 2 light chains

- synthesis: B-lymphocytes

THE ACUTE PHASE RESPONSE

Akut- fázis fehérjék

protease inhibitors	a2 macroglobulin a1antitripsin
complement factors	C3, B factor, C1inhib
coagulation proteins	fibrinogen
opsonins	C3, CRP mannan binding lect

immunmodulant proteins

other proteins

nannan binding lectin C3, prot.inhib

albumin, coeruloplazmin

Acute phase proteins

increase

C3, coeruloplazmin –1.5-2X

αlantitripsin, haptoglobulin, 2-4 X fibrinogen

C1inhibitor- 6-8X

decrease

transferrin, albumin, fibronektin 0.4- 0.6 X

Coagulation system

Coagulation system

Factors involved in blood coagulation

vessel wall (two independent effetcs)

➤ local vessel reaction: injury —→vazoconstriction

intact endothelium produces anticoagulant factors

coagulation process localised at the site of injury

- platelets
- blood clotting factors

Interaction of factors involved in blood coagulation

Platelets

-number: 150-300.000/ µl

- structure:

Platelet activation

Primary thrombus

- adhesion (platelet attachement to subendothelial surface): GPIb-vWF
- aggregation (interaction of platelets): GPIIb/IIIa-n

Coagulation cascade

Coagulation cascade

- activation of trombin:

 cascade is activated by the activation of factor VII (extrinsic pathway)

elements of intrinsic
 pathway (IX, XI)
 amplify the process

- the formed thrombin cleaves fibrinogen

Inhibitors of coagulation cascade

protein C: - activated by trombin at the presence of trombomodulin
 intact endothelium

- inactivation of factor V and VIII

• antithrombin: - inactivates many factors (trombin, IX, X, XI, XII)

- heparine required for intensive action

Coagulation cascade

Fibrinolysis

Role of liver in coagulation

• most of the factors of coagulatin-fibrinolytic system are synthesized by the liver

it can not produce enough factors in severe liver damage haemophilia

• liver performs also posttranslational modifications (Gla-synthesis) of some factors (prothrombin, factor VII, IX, X, protein C, S)

degredation of inactive factors

Gla-synthesis

-carboxylation of Glu

- requires vitamin K

Vitamin K cycle

Gla-gamma karboxiglutamát

Anticoagulant factors

- aspirin: inhibition of $PLA_2 \rightarrow$ inhibition of thrombocyta activation
- heparin: enhances action of antitrombin
- kumarin derivatives (Syncumar) inhibition of vitamin K cycle
- Ca²⁺ -binding molecules (citrate, oxalate, EDTA): only in vitro

Biochemistry of Erythrocytes

Biochemistry of Erythrocytes

- number: 4,5 5,5 million/ µl
- size: 7 µm
- discoid form
- spetial membran proteins

they easily deform ↓

they can squeeze through the smaler capillaries

 their proteins besome elder during their life time (120 days), because they don't sythetize proteins; erythrocytes loose from their flexibility

Biochemistry of Erythrocytes

Results of Specific metabolism:

> there is no mitochondrium: it gains energy only from glycolysis

glucose has to be there contaniously insulin independent glucose transporter (GLUT-1) pyruvate is formed by glycolysis, it is catabolised by anaerob way lactate is generated Cori- cycle

Cori Cycle

➤ there is no nucleus — → and protein synthesis

> the glutatione is the only one of the antioxidant

- NADPH is assured by HMP-shunt
- disorder of HMP-shunt (in case of glucose-6-P-dehydrogenase deficiency)
 there is no enough NADPH the cell can't protect ______ drug induced against oxidative effects

Regulation of O₂ dissociation
2,3 diphosphoglycerate (2,3 DPG)

Generation: from glycolysis (Rapaport-shunt)

DPGM: diphosphoglycerate mutase DPGP: diphosphoglycerate phosphatase

Utilisation of intermediates which are origined from glycolysis

Iron Metabolism of Organism

- Iron requirement: for men:1-2 mg, for whomen 2-3 mg (it is higher because of menstrual blood loss)

- for absorption need to eat 10-20 mg iron per days

Iron uptake into the cells

- transporting transferrin is binding to receptor
 endocytosis
- 2. pH decrease in endosome

transferrin gives up iron ferritin takes it up (iron storage)

3. transferrin returns onto the cell surface and dissociates from receptor

Nature Reviews | Genetics

Hemoglobin

- hemoglobin
 - globin protein (4 subunits) adult form: 2α és 2β chains
 fetal: 2α és 2γ chains

- hem (=protoporfirin IX + Fe^{2+}): connets to each subunits

• myoglobin: 1 polipeptide + 1 hem

Structure

hemoglobin

myoglobin

Oxygen binding changes the conformation of hemoglobin

tight sructure (tight: T) deoxygenated form \longrightarrow (apolar and ionic chemical forces between α and β chains

oxygenated — Fe 2+ moves into the layer of porphirine ring conformation of subunits changes apolar and ionic forces are broken up relaxed (R) conformation

Oxygen binding

 hemoglobin: cooperation among the subunits (oxygen binding caused conformational change of one chain enhances the binding capacity of neighboring chain

sigmoid saturation curve

• mioglobin: 1 peptide chain (no cooperation)

hyperbolic saturation curve (according to Michaelis-Menten kinetics)

Oxygen dissociation curve

